Warning: Does not work in Internet Explorer, use Chrome or Edge instead. Loading data...

Selected markers

Statistics Table

Time series Table


Satellite products used in current version:

 

Product name

Original Providers Dataset Name and Metadata.

Geographical Extent

Temporal Extent

Algorithm Used

CMEMS: ATLANTIC monthly (1km)

dataset-oc-atl-chl-multi_cci-l4-chl_1km_monthly-rep-v02

Atlantic

1997-09-01 to 2016-09-01

OC5ci algorithm, a combination of OCI (Hu, Lee & Franz, 2012) and OC5 (Gohin, F., et al., 2008.)

CMEMS: ATLANTIC weekly (1km)

dataset-oc-atl-chl-multi_cci-l4-chl_1km_8days-rep-v02

Atlantic

1997-08-29 to 2016-12-26

CMEMS: BALTIC daily (1km)

dataset-oc-bal-chl-multi_cci-l3-chl_1km_daily-rep-v02

Baltic

1997-09-04 to 2016-12-31

BalAlg is an adaptation of the OC4v6 algorithm for the Baltic Sea (Pitarch et al., 2016).

CMEMS: BLACK SEA weekly (1km)

dataset-oc-bs-chl-multi_cci-l4-chl_1km_8days-rep-v02

Black Sea

1997-09-14 to 2016-12-26

Regional ocean colour algorithm (BSAlg, Kopelevich et al., 2013)

CMEMS: BLACK SEA monthly (1km)

dataset-oc-bs-chl-multi_cci-l4-chl_1km_monthly-rep-v02

Black Sea

1997-09-01 to 2016-09-01

CMEMS: MEDITERRANEAN weekly (1km)

dataset-oc-med-chl-multi_cci-l4-chl_1km_8days-rep-v02

Mediterranean

1997-09-14 to 2016-12-26

For Case 1 waters, an updated version of the algorithm reported in Volpe et al. (2007), has been adopted; for Case 2 waters type the AD4 algorithm (DAlimonte and Zibordi, 2003)

CMEMS: MEDITERRANEAN monthly (1km)

dataset-oc-med-chl-multi_cci-l4-chl_1km_monthly-rep-v02

Mediterranean

1997-09-01 to 2016-09-01

 


Bibliographic references on the use of satellite chlorophyll-a across the European marine regions:


MSFD Implementation:

  • Coppini, G., V. Lyubarstev, et al. (2013). "The Use of Ocean-Colour Data to Estimate Chl-a Trends in European Seas." International Journal of Geosciences Vol.04No.06: 23.
  • Cristina, S., J. Icely, et al. (2015). "Using remote sensing as a support to the implementation of the European Marine Strategy Framework Directive in SW Portugal." Continental Shelf Research 108: 169-177.
  • Ferreira, J. G., J. H. Andersen, et al. (2011). "Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive." Estuarine, Coastal and Shelf Science 93(2): 117-131.
  • Gohin, F., B. Saulquin, et al. (2008). "Towards a better assessment of the ecological status of coastal waters using satellite-derived chlorophyll-a concentrations." Remote Sensing of Environment 112(8): 3329-3340.
  • Lynam, C. P., L. Uusitalo, et al. (2016). "Uses of Innovative Modeling Tools within the Implementation of the Marine Strategy Framework Directive." Frontiers in Marine Science 3(182).
  • Novoa, S., G. Chust, et al. (2012). "Water quality assessment using satellite-derived chlorophyll-a within the European directives, in the southeastern Bay of Biscay." Marine Pollution Bulletin 64(4): 739-750.

Baltic:

  • Andersen, J. H., J. Carstensen, et al. (2017). "Long-term temporal and spatial trends in eutrophication status of the Baltic Sea." Biological Reviews 92(1): 135-149.
  • Bai, Y., X. He, et al. (2018). "Changes in the ecological environment of the marginal seas along the Eurasian continent from 2003 to 2014." Sustainability (Switzerland) 10(3).
  • Bulgarelli, B., F. Mélin, et al. (2003). "SeaWiFS-derived products in the Baltic Sea: Performance analysis of a simple atmospheric correction algorithm." Oceanologia 45(4): 655-677.
  • Darecki, M., S. Kaczmarek, et al. (2005). "SeaWiFS ocean colour chlorophyll algorithms for the southern Baltic Sea." International Journal of Remote Sensing 26(2): 247-260.
  • Darecki, M. and D. Stramski (2004). "An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea." Remote Sensing of Environment 89(3): 326-350.
  • Darecki, M., A. Weeks, et al. (2003). "Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms." Continental Shelf Research 23(3-4): 237-250.
  • Erkkilä, A. and R. Kalliola (2004). "Patterns and dynamics of coastal waters in multi-temporal satellite images: Support to water quality monitoring in the Archipelago Sea, Finland." Estuarine, Coastal and Shelf Science 60(2): 165-177.
  • Gade, M., O. Rud, et al. (2000). Multisensor studies of oceanic phaenomena in european marginal waters: Algae blooms in the baltic sea and a river plume in the mediterranean. European Space Agency, (Special Publication) ESA SP.
  • Härmä, P., J. Vepsäläinen, et al. (2001). "Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland." Science of the Total Environment 268(1-3): 107-121.
  • Kahru, M. and R. Elmgren (2014). "Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea." Biogeosciences 11(13): 3619-3633.
  • Kaitala, S., J. Seppälä, et al. (2005). Recent advances in Operational Phytoplankton Monitoring System Alg@line. Proceedings, 31st International Symposium on Remote Sensing of Environment, ISRSE 2005: Global Monitoring for Sustainability and Security.
  • Karabashev, G. S. and M. A. Evdoshenko (2016). "Narrowband shortwave minima in spectra of backscattered light from the sea obtained from ocean color scanners as a remote indication of algal blooms." Oceanologia 58(4): 279-291.
  • Koponen, S., J. Attila, et al. (2007). "A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland." Continental Shelf Research 27(2): 228-244.
  • Koponen, S., J. Vepsäläinen, et al. (2005). Using meris data for the retrieval of CHL-A, CDOM and TSS values in the gulf of Finland and lake lohjanjärvi. European Space Agency, (Special Publication) ESA SP.
  • Kratzer, S., C. Brockmann, et al. (2008). "Using MERIS full resolution data to monitor coastal waters - A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea." Remote Sensing of Environment 112(5): 2284-2300.
  • Kratzer, S., P. Kowalczuk, et al. (2017). Bio-optical water quality assessment susanne kratzer, piotr kowalczuk, and s?awomir sagan. Biological Oceanography of the Baltic Sea: 527-545.
  • Krezel, A., L. Szymanek, et al. (2005). "Influence of coastal upwelling on chlorophyll a concentration in the surface water along the Polish coast of the Baltic Sea." Oceanologia 47(4): 433-452.
  • Kutser, T. (2004). "Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing." Limnology and Oceanography 49(6): 2179-2189.
  • Lessin, G., V. Ossipova, et al. (2009). "Identification of the coastal zone of the central and eastern Gulf of Finland by numerical modeling, measurements, and remote sensing of chlorophyll a." Hydrobiologia 629(1): 187-198.
  • Lilover, M. J. and A. Stips (2008). "The variability of parameters controlling the cyanobacteria bloom biomass in the Baltic Sea." Journal of Marine Systems 74(SUPPL.): S108-S115.
  • ?ysiak-Pastuszak, E., M. Bartoszewicz, et al. (2012). "A study of episodic events in the Baltic Sea - Combined in situ and satellite observations." Oceanologia 54(2): 121-141.
  • Metsamaa, L. and T. Kutser (2016). On suitability of MODIS satellite chlorophyll products for the Baltic Sea conditions. 2006 IEEE US/EU Baltic International Symposium, BALTIC 2006.
  • Ostrowska, M., M. Darecki, et al. (2015). "Practical Applicability and Preliminary Results of the Baltic Environmental Satellite Remote Sensing System (Satba?tyk)." Polish Maritime Research 22(3): 43-49.
  • Pitarch, J., G. Volpe, et al. (2016). "Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012 using merged multi-sensor data." Ocean Science 12(2): 379-389.
  • Qin, P., S. G. H. Simis, et al. (2017). "Radiometric validation of atmospheric correction for MERIS in the Baltic Sea based on continuous observations from ships and AERONET-OC." Remote Sensing of Environment 200: 263-280.
  • Schilling, P., M. Powilleit, et al. (2006). "Chlorophyll-a determination: Results of an interlaboratory comparison." Accreditation and Quality Assurance 11(8-9): 462-469.
  • Soja-Wo?niak, M., S. E. Craig, et al. (2017). "A novel statistical approach for ocean colour estimation of inherent optical properties and cyanobacteria abundance in optically complex waters." Remote Sensing 9(4).
  • Stock, A. (2015). "Satellite mapping of Baltic Sea Secchi depth with multiple regression models." International Journal of Applied Earth Observation and Geoinformation 40: 55-64.
  • Vepsäläinen, J., T. Pyhälahti, et al. (2005). "The combined use of optical remote sensing data and unattended flow-through fluorometer measurements in the Baltic Sea." International Journal of Remote Sensing 26(2): 261-282.
  • Wo?niak, B., K. Bradtke, et al. (2011). "SatBa?tyk - a Baltic environmental satellite remote sensing system- an ongoing project in Poland. Part 1: Assumptions, scope and operating range." Oceanologia 53(4): 897-924.
  • Wo?niak, B., R. Majchrowski, et al. (2007). "Remote sensing of vertical phytoplankton pigment distributions in the Baltic: New mathematical expressions. Part 3: Non-photosynthetic pigment absorption factor." Oceanologia 49(4): 513-526.
  • Wo?niak, H., A. Krezel, et al. (2008). "Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus." Oceanologia 50(4): 451-508.
  • Wo?niak, M., K. M. Bradtke, et al. (2014). "Comparison of satellite chlorophyll a algorithms for the Baltic Sea." Journal of Applied Remote Sensing 8(1).
  • Zhang, D., S. Lavender, et al. (2017). "Determination of phytoplankton abundances (Chlorophyll-a) in the optically complex inland water - The Baltic Sea." Science of the Total Environment 601-602: 1060-1074.
  • Zhang, D., S. Lavender, et al. (2018). "MERIS observations of phytoplankton phenology in the Baltic Sea." Science of the Total Environment 642: 447-462.
  • Zhang, Y., J. Pulliainen, et al. (2002). "Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data." Remote Sensing of Environment 81(2-3): 327-336.

Black sea:

  • Ghezehegn, S. G., P. Steef, et al. (2014). Hyperspectral remote sensing for estimating coastal water quality: Case study on coast of Black Sea, Romania. Proceedings of SPIE - The International Society for Optical Engineering.
  • Guneroglu, A., E. Kose, et al. (2010). "Intercomparison and usage of different Chl-A algorithms and in-situ validitation of OC3M in continental shelf waters of the Black Sea." Fresenius Environmental Bulletin 19(3): 452-460.
  • Jönsson, L. (2002). SeaWiFs satellite data analysis of Black Sea water discharge pattern into the Aegean Sea. Water Science and Technology. 46: 195-202.
  • Kopelevich, O. V., S. V. Sheberstov, et al. (2002). "Surface chlorophyll in the Black Sea over 1978–1986 derived from satellite and in situ data." Journal of Marine Systems 36(3): 145-160.
  • Korchemkina, E. N. and M. E. Lee (2015). "Anomal'nye opticheskie kharakteristiki pribrezhnykh vod Chernogo morya v iyule 2012 g. I ikh svyaz' s kontsentratsiei mineral'noi vzvesi v vode (Anomalous optical characteristics of the coastal waters of the Black Sea in July 2012 and their relationship to the suspended matter concentration in water)." Fundamentalnaya I Prikladnaya Gidrofizika 10(1): 39-43.
  • Korchemkina, E. N. and A. A. Molkov (2018). "Regional bio-optical algorithm for Gorky Reservoir: First results." Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 15(3): 184-192.
  • Lavrova, O. Y., M. I. Mityagina, et al. (2017). "Satellite monitoring of the Black Sea ecological risk areas." Ecologica Montenegrina 14: 1-13.
  • Lavrova, O. Y., D. M. Solov'ev, et al. (2014). "Sputnikovyi monitoring intensivnogo tsveteniya vodoroslei v Rybinskom vodokhranilishche (Satellite monitoring of intensive algae blooms in the Rybinsk Reservoir)." Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 11(3): 54-72.
  • Lee, M. E. and O. V. Martynov (2000). "Izmeritel' koeffitsientov yarkosti dlya podsputnikovykh izmerenii bioopticheskikh parametrov vod (Reflectance meter for sub-satellite measurements of bio-optical parameters of water)." Ekologicheskaya Bezopasnost' Pribrezhnoi I Shel'Fovoi Zon I Kompleksnoye Ispol'Zovanie Resursov Shel'Fa: 163-173.
  • Mikaelyan, A. S., V. K. Chasovnikov, et al. (2017). "Phenology and drivers of the winter–spring phytoplankton bloom in the open Black Sea: The application of Sverdrup’s hypothesis and its refinements." Progress in Oceanography 151: 163-176.
  • Mikaelyan, A. S., G. I. Shapiro, et al. (2017). "Drivers of the autumn phytoplankton development in the open Black Sea." Journal of Marine Systems 174: 1-11.
  • Shalovenkov, N. (2000). "Scales of ecological processes and anthropogenous loads on the coastal ecosystems of the Black Sea." Estuarine, Coastal and Shelf Science 50(1): 11-16.
  • Sur, H. I., E. Özsoy, et al. (1996). "Coastal/deep ocean interactions in the Black Sea and their ecological/environmental impacts." Journal of Marine Systems 7(2-4): 293-320.
  • Sur, H. I., E. Özsoy, et al. (1994). "Boundary current instabilities, upwelling, shelf mixing and eutrophication processes in the Black Sea." Progress in Oceanography 33(4): 249-302.
  • Tsiaras, K. P., V. H. Kourafalou, et al. (2008). "A three-dimensional coupled model of the Western Black Sea plankton dynamics: Seasonal variability and comparison to Sea WiFS data." Journal of Geophysical Research: Oceans 113(7).

Mediterranean:

  • Barale, V. (2010). "Toward an ecosystem approach to ICM: assessing ecological provinces at sea by remote sensing." Journal of Coastal Conservation 14(4): 317-326.
  • Barale, V., J. M. Jaquet, et al. (2008). "Algal blooming patterns and anomalies in the Mediterranean Sea as derived from the SeaWiFS data set (1998-2003)." Remote Sensing of Environment 112(8): 3300-3313.
  • Basterretxea, G., J. S. Font-Muñoz, et al. (2018). "Patterns of chlorophyll interannual variability in Mediterranean biogeographical regions." Remote Sensing of Environment 215: 7-17.
  • Camp, J., E. Flo, et al. (2015). "Pros and Cons of Biological Quality Element Phytoplankton as a Water-Quality Indicator in the NW Mediterranean Sea." In: A. Munné et al. (eds.), Experiences from Ground, Coastal and Transitional Water Quality Monitoring. The Handbook of Environmental Chemistry 43: 135-160.
  • Colella, S., F. Falcini, et al. (2016). "Mediterranean ocean colour chlorophyll trends." PLoS ONE 11(6).
  • Conversi, A., S. F. Umani, et al. (2010). "The mediterranean sea regime shift at the end of the 1980s, and intriguing parallelisms with other european basins." PLoS ONE 5(5).
  • Djakovac, T., D. Degobbis, et al. (2012). "Marked reduction of eutrophication pressure in the northeastern Adriatic in the period 2000-2009." Estuarine, Coastal and Shelf Science 115: 25-32.
  • Garmendia, M., A. Borja, et al. (2015). "Challenges and difficulties in assessing the environmental status under the requirements of the Ecosystem Approach in North African countries, illustrated by eutrophication assessment." Environ Monit Assess 187(5): 289.
  • Gohin, F. (2011). "Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters." Ocean Sci. 7: 705-732.
  • Gohin, F. (2011). "Joint use of satellite and in-situ data for coastal monitoring." Ocean Sci. Discuss. J1 - OSD 8(3): 955-998.
  • Mélin, F., V. Vantrepotte, et al. (2011). "Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea." Progress in Oceanography 91(3): 229-244.

Northeast Atlantic:

  • Barnes, C., X. Irigoien, et al. (2011). "Predicting marine phytoplankton community size structure from empirical relationships with remotely sensed variables." Journal of Plankton Research 33(1): 13-24.
  • Bashmachnikov, I., T. V. Belonenko, et al. (2013). "Intra-annual and interannual non-stationary cycles of chlorophyll concentration in the Northeast Atlantic." Remote Sensing of Environment 137: 55-68.
  • Brito, A. C., C. Sá, et al. (2015). "Effect of phytoplankton size classes on bio-optical properties of phytoplankton in the Western Iberian coast: Application of models." Remote Sensing of Environment 156: 537-550.
  • Brotas, V., R. J. W. Brewin, et al. (2013). "Deriving phytoplankton size classes from satellite data: Validation along a trophic gradient in the eastern Atlantic Ocean." Remote Sensing of Environment 134: 66-77.
  • Coppini, G., V. Lyubarstev, et al. (2012). "Chl a trends in European seas estimated using ocean-colour products." Ocean Science Discussions 9: 1481-1518.
  • Cristina, S., J. Icely, et al. (2015). "Using remote sensing as a support to the implementation of the European Marine Strategy Framework Directive in SW Portugal." Continental Shelf Research 108: 169-177.
  • Cristina;, S., D. D’Alimonte;, et al. (2016). "Standard and Regional Bio-Optical Algorithms for Chlorophyll a Estimates in the Atlantic off the Southwestern Iberian Peninsula." IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 13(6): 757-761.
  • Feng, J., L. C. Stige, et al. (2014). "Large-scale season-dependent effects of temperature and zooplankton on phytoplankton in the North Atlantic." Marine Ecology Progress Series 502: 25-37.
  • Frajka-Williams, E. and P. B. Rhines (2010). "Physical controls and interannual variability of the Labrador Sea spring phytoplankton bloom in distinct regions." Deep-Sea Research I 57(4): 541-552.
  • Goela, P. C., S. Cristina, et al. (2016). "Technical Note: Algal Pigment Index 2 in the Atlantic off the Southwest Iberian Peninsula: standard and regional algorithms." Ocean Sci. Discuss. 2016: 1-13.
  • Gohin, F. (2011). "Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters." Ocean Sci. 7: 705-732.
  • Gohin, F. (2011). "Joint use of satellite and in-situ data for coastal monitoring." Ocean Sci. Discuss. J1 - OSD 8(3): 955-998.
  • Gohin, F., B. Saulquin, et al. (2008). "Towards a better assessment of the ecological status of coastal waters using satellite-derived chlorophyll-a concentrations." Remote Sensing of Environment 112(8): 3329-3340.
  • Gonzalez Taboada, F. and R. Anadon (2014). "Seasonality of North Atlantic phytoplankton from space: impact of environmental forcing on a changing phenology (1998-2012)." Glob Chang Biol 20(3): 698-712.
  • González Taboada, F. and R. Anadón (2014). "Seasonality of North Atlantic phytoplankton from space: impact of environmental forcing on a changing phenology (1998–2012)." Global Change Biology 20(3): 698-712.
  • Kahru, M., V. Brotas, et al. (2011). "Are phytoplankton blooms occurring earlier in the Arctic?" Global Change Biology 17(4): 1733-1739.
  • Krug, L. A., T. Platt, et al. (2017). "Unravelling region-specific environmental drivers of phytoplankton across a complex marine domain (off SW Iberia)." Remote Sensing of Environment 203: 162-184.
  • Lobanova, P. V., I. L. Bashmachnikov, et al. (2015). "Validation of satellite derived primary production models in the Northeast Atlantic." Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 12(2): 114-126.
  • Mendonça, A. P., A. M. Martins, et al. (2010). "Evaluation of ocean color and sea surface temperature sensors algorithms using in situ data: A case study of temporal and spatial variability on two northeast Atlantic seamounts." Journal of Applied Remote Sensing 4(1).
  • Mohn, C. and M. White (2007). "Remote sensing and modelling of bio-physical distribution patterns at Porcupine and Rockall Bank, Northeast Atlantic." Continental Shelf Research 27(14): 1875-1892.
  • Moisan, T. A. H., J. R. Moisan, et al. (2013). "Algorithm development for predicting biodiversity based on phytoplankton absorption." Continental Shelf Research 55(0): 17-28.
  • Novoa, S., G. Chust, et al. (2011). "Estimation of chlorophyll-a concentration in waters over the continental shelf of the Bay of Biscay: a comparison of remote sensing algorithms." International Journal of Remote Sensing DOI:10.1080/01431161.2010.540588.
  • Palacz, A. P., M. A. St John, et al. (2013). "Distribution of phytoplankton functional types in high-nitrate low-chlorophyll waters in a new diagnostic ecological indicator model." Biogeosciences Discussions 10: 8103-8157.
  • Pingree, R. D. and C. Garcia-Soto (2014). "Plankton blooms, ocean circulation and the European slope current: Response to weather and climate in the Bay of Biscay and W English Channel (NE Atlantic)." Deep Sea Research Part II: Topical Studies in Oceanography 106: 5-22.
  • Sadeghi, A., T. Dinter, et al. (2012). "Improvement to the PhytoDOAS method for identification of coccolithophores using hyper-spectral satellite data." Ocean Science 8: 1055-1070.
  • Sánchez-Carnero, N., E. Couñago, et al. (2011). "Exploiting oceanographic satellite data to study the small scale coastal dynamics in a NE Atlantic open embayment." Journal of Marine Systems 87(2): 123-132.
  • Vantrepotte, V. and F. Mélin (2010). "Temporal variability in SeaWiFS derived apparent optical properties in European seas." Continental Shelf Research 30(3-4): 319-334.

CHLO4MSFD Service will help you to:

    * Visualize Chlorophyll-a data maps
    * Extract & View Time Series data from your selected locations (markers)
    * Download Time Series data from your selected locations (markers)

1- Visualize Chlorophyll-a data maps:




2- Add Markers & Extract Time Series data:





3- View & Download Time Series data from your selected locations (markers):


Service to support MSFD assessment for indicators based on chlorophyll-a values from ocean color satellites.

Developed under the CALL FOR TENDER NO. 33-UU-DO-CMEMS-DEM3, "DEVELOPMENT AND PROMOTION OF DEMONSTRATIONS OF CMEMS DOWNSTREAM SERVICES CONTRIBUTING TO THE IMPLEMENTATION OF THE MSFD OF THE EUROPEAN UNION"

 

Data Citation:

  • The data and services provided by CHLO4MSFD have been generated using E.U. Copernicus Marine Service Information.
  • CHLO4MSFD Service is operationally maintained by AZTI (until December 2019)
  • The Data and Services are freely distributed.
  • However, when you publish our data or results derived therefrom, we request that you include an acknowledgment within the text of the publication and reference list, as follows:

"The data were extracted from the [data product] generated under the E.U. Copernicus Marine Service Information, using the CHLO4MSFD Service operated by AZTI (http://chlo4msfd.azti.es)"


Built with:

 

Creator:

Yolanda Sagarminaga (AZTI)

Developers:

Maria Korta (AZTI)

Yolanda Sagarminaga (AZTI)

 

Contact Info: http://chlo4msfd.azti.es/contact/